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MODELS FOR PREDATOR-PREY SYSTEMS AT MULTIPLE SCALES*
R. S. CANTRELL! AND C. COSNERT

Abstract. Spatially explicit models are constructed for predator dispersal, predator-prey interactions, and prey
dispersal and population dynamics in a system where the appropriate spatial and temporal scales for the predator
are different from those for the prey. The models are based on the hypotheses that the predator experiences the
environment as a collection of patches and disperses among the patches by immigration and emigration on a time
scale much shorter than its reproductive interval, while the prey experiences each patch as a continuum on which it
disperses by diffusion while reproducing logistically. The models are motivated by a natural system in which ladybird
beetles aggregate at and feed upon colonies of aphids which grow on patches of host plants. Structurally the models
are a hybrid of patch models and reaction-diffusion (ie., KISS) models. The models are studied at equilibrium or
pseudoequilibrium via methods derived from reaction~diffusion theory. The behavior of the models under variations
in patch size is analyzed, and it is shown that in some cases they predict smaller prey densities on larger patches, or
even maximum as well as minimum patch sizes which can sustain a prey population. This last prediction is in contrast
with the predictions of reaction-diffusion (KISS) models for the prey alone, in which there is typically a minimum
patch size which will sustain a prey population and the prey density increases toward carrying capacity as patch size
increases.
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1. Introduction. Ecological phenomena occur in space and time across a wide range of
scales. The scale on which a phenomenon occurs can affect both quantitative and qualitative
features of that phenomenon. In some situations the different populations involved in an
ecological interaction may experience space and time on very different scales, so that the
most appropriate theoretical and mathematical descriptions of their behavior are qualitatively
different. There are only a few models or theoretical treatments which incorporate such
qualitative differences. More typically, interacting populations are all assumed to experience
their spatial environment in the same way-—either as a single point, a collection of patches,
or a continuum—and at the same rate. In fact, it is common to see models where dispersal,
predation and resource consumption, and reproduction all seem to occur on the same time
scale for all the populations involved. Our goal in this article is to construct and analyze some
models which explicitly consider the qualitative differences in the appropriate population
dynamical models for the different interacting species in a system where those species operate
on very different spatial and temporal scales. Specifically, we consider a situation where a
predator operates on a large spatial scale and experiences its environment as patchy while the
prey operates on a small spatial scale and experiences each patch as a continuum. We also
assume that the time scale for predator dispersal is very fast, the time scales for prey dispersal
and reproduction are moderately fast, but the time scale for predator reproduction is relatively
slow. Hence, we will view the predators as immigrating to and emigrating from patches
rapidly enough that the predator population on any patch effectively reaches equilibrium
almost immediately but the prey population on any patch disperses by diffusion through the .
patch while growing logistically. We will view the dispersal and reproduction time scale for the
prey to be faster enough than the reproductive time scale for the predator for it to be reasonable
to study the system in terms of the logistic equilibrium for the prey corresponding to a given
population or supply rate for the predator. Returning to the spatial scale of the system, we
will then analyze how the prey equilibrium is affected by patch size. Our work is motivated
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For that reason we have considered only the simplest sort of reaction-diffusion models for the
prey, but our results would extend directly to the more complicated models studied in [3, 5]
and to arbitrary patch shapes. It would be possible to incorporate patch shape as a variable,
e.g., by viewing patches as rectangles and using the length/width ratio as a parameter, but we
have not done that.

The ecological background of the models and the modeling procedure are discussed in
§2. The mathematical background for analysis of the models is given in §3, and the analysis
and interpretation is also performed in that section. The models are divided into cases by the
hypotheses, specifically purely geometric vs. aggregative predator immigration/emigration and
unlimited predator supply vs. a finite predator population. Finally, some general conclusions
and comparisons are drawn in §4. The reader who is primarily interested in the ecological
aspects of this work may want to read §§2 and 4 before turning to §3. The mathematically
oriented reader will probably find §3 to be the most interesting.

2. The models.

2.1. Ecological background. Our goal in this section is to construct a class of spatially
explicit predator-prey models for situations where the dynamics of dispersal and population
growth for the predator and the prey occur on such different scales that the descriptions of
spatial effects that are most appropriate for the predator are qualitatively different than those
that are most appropriate for the prey. Specifically, we envision a situation in which the scale
of dispersal for the prey is small but the rate of reproduction is large relative to those of the
predator, and where the environment consists of a number of patches which are large relative
to the spatial scale experienced by the prey but small relative to the spatial scale of the predator.
Thus, it is most appropriate to describe the spatial dynamics of the predator in terms of a patch
model and those of the prey in terms of a collection of spatially continuous models, one for
each patch. We shall use simple diffusion models for the prey since those models can easily
incorporate patch size but are analytically tractable. Since the population dynamics of the
prey are assumed to occur on a faster time scale than those of the predator, we describe the
dynamics of the prey populations within the patches in terms of logistic growth with predation
and those of the predator in terms of immigration and emigration. We have both theoretical
and applied reasons for considering the scenario described above. The theoretical reason is to
address the general question of how to connect phenomena at different scales, as discussed in
[32] and treated in [26] in the case of a single continuous but heterogeneous environment. Our
assumptions are somewhat different from those of [26] because we are interested in studying
situations where the effects of scale are qualitative as well as quantitative, specifically where
the predator experiences a patchy environment while the prey experiences a collection of
continuous environments. The applied reason for considering models with those features is
that they may give a rough description of certain real systems. The direct inspiration for
the scenario is the work of Kareiva and his colleagues [17, 34] on the fireweed (Epilobium
angustifolium (Onagracae))/aphid (Aphis varians)fladybird beetle (Hippodamia convergens
(Coccinellidae)) system which emerged near Mt. St. Helens after the eruption of 1980. A
specific phenomenon which we address in our models is the observation in [17, p. 185] that
sometimes larger patches of fireweed sustained lower densities of aphids than smaller patches,
in reverse of the predictions of standard reaction-diffusion theory. Our models suggest that
in certain cases there may be an inverse relation between patch size and prey density due to
the presence of predators. '

Much of the background information we considered in constructing our models is from
[34]; see also [15] for a discussion of other aphid/coccinnelid systems. We shall summarize
some of the pertinent observations. The fireweed grows (among other places) in patches in
the harsh volcanic regions of the blast zone of Mt. St. Helens [17]. The aphids live on the
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by a natural system involving aphids inhabiting patches of host plants and ladybird beetles
preying upon the aphids, which was studied by Turchin and Kareiva [34] and is described
in [17]. It is noted in [17] that in some cases larger patches of host plants had lower aphid
densities, which is the opposite of the predictions of simple spatially explicit models for the
aphid population based on classical reaction-diffusion theory. (Such models are sometimes
called KISS models.) We shall see that such an effect is sometimes predicted by various
models which take predator immigration and emigration into account.

‘We consider and compare the implications of a number of different hypotheses. Our
models are based on the assumption that the predator experiences the spatial domain as a
collection of patches while the prey experiences each patch as a continuum. We consider
two sorts of predator dispersal: purely geometric, in which the immigration and emigration
rates of the predator depend only on the size of the patch; and aggregative, where the predator
emigration rate also depends inversely on the average prey density. The inverse dependence on
prey density in the emigration rate is a crude model for area-restricted search by the predator.
Area-restricted search is known to predict a type of predator aggregation in continuous habitats
[18], so it is in that sense that our second type of model may be called aggregative. We also
consider two hypotheses about the number of predators: either an unlimited supply, reflecting
the presence of a large nearby source population, or a finite population, reflecting a closed
system. In the second case we consider the possibility that increasing the size of patches
corresponds to an increase in the total size or geographic area of the closed system, and thus
corresponds to a proportional increase in the predator population.

Our modeling of the patches as continua is done as simply as possible so that our compu-

tations can be made easily and explicitly. In particular, we assume that the patches are square, .

that the prey disperse through each patch by simple diffusion, and that each patch is spatially
homogeneous in the sense that the prey growth rate and carrying capacity are constant. None
of these hypotheses is crucial for the qualitative aspects of our results. Those depend on
existence theory for stable equilibria of diffusive logistic equations, which depends in turn on
the behavior of eigenvalues of certain associated elliptic differential operators. The simplest
sort of model would in one space dimension lead to the eigenvalue problem

d*¢
(48)) —sz—z =Air¢ for O0<x<l,
o0 =o(@) =0.

A quite general class of models with spatial heterogeneity in growth andfor diffusion rates
and perhaps even density-dependent dispersal was studied in [3, 5] and shown to behave in
the same way as simple KISS (i.e., spatially homogeneous reaction-diffusion) models in the
sense that the existence of a stable positive equilibrium depends on the principal eigenvalue
of a problem of the form ‘

9 80 8 397
—_ [*a—;Dl(x, y)-é-; + 5;D2(xa }’)‘a‘;] = A-r(xv }’)¢

for (x,y) e 2, ¢(x,y)=00n3Q,

(1.2)

where € is a bounded region in two-dimensional space. The key point here is that the criterion
for existence of a stable positive prey equilibrium depends on the size of the positive principal
eigenvalue of (1.1) or (1.2), and that in both (1.1) and (1.2) that principal eigenvalue varies
proportionally with 1/ if the spatial domain is rescaled by multiplying the linear dimension
by afactor /. Thus, the behavior of the system with respect to changes of the spatial scale of the
patches would be the same in the simple case and the more complicated case. The numerical
values of certain parameters would change, but the asymptotic behavior as [ —> oo would not.
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For that reason we have considered only the simplest sort of reaction-diffusion models for the
prey, but our results would extend directly to the more complicated models studied in [3, 5]
and to arbitrary patch shapes. It would be possible to incorporate patch shape as a variable,
e.g., by viewing patches as rectangles and using the length/width ratio as a parameter, but we
have not done that.

The ecological background of the models and the modeling procedure are discussed in
§2. The mathematical background for analysis of the models is given in §3, and the analysis
and interpretation is also performed in that section. The models are divided into cases by the
hypotheses, specifically purely geometric vs. aggregative predator immigration/emigration and
unlimited predator supply vs. a finite predator population. Finally, some general conclusions
and comparisons are drawn in §4. The reader who is primarily interested in the ecological
aspects of this work may want to read §§2 and 4 before turning to §3. The mathematically
oriented reader will probably find §3 to be the most interesting.

2. The models.

2.1. Ecological background. Our goal in this section is to construct a class of spatially
explicit predator-prey models for situations where the dynamics of dispersal and population
growth for the predator and the prey occur on such different scales that the descriptions of
spatial effects that are most appropriate for the predator are qualitatively different than those
that are most appropriate for the prey. Specifically, we envision a situation in which the scale
of dispersal for the prey is small but the rate of reproduction is large relative to those of the
predator, and where the environment consists of a number of patches which are large relative
to the spatial scale experienced by the prey but small relative to the spatial scale of the predator.
Thus, it is most appropriate to describe the spatial dynamics of the predator in terms of a patch
model and those of the prey in terms of a collection of spatially continuous models, one for
each patch. We shall use simple diffusion models for the prey since those models can easily
incorporate patch size but are analytically tractable. Since the population dynamics of the
prey are assumed to occur on a faster time scale than those of the predator, we describe the
dynamics of the prey populations within the patches in terms of logistic growth with predation
and those of the predator in terms of immigration and emigration. We have both theoretical
and applied reasons for considering the scenario described above. The theoretical reason is to
address the general question of how to connect phenomena at different scales, as discussed in
[32] and treated in [26] in the case of a single continuous but heterogeneous environment. Our
assumptions are somewhat different from those of [26] because we are interested in studying
situations where the effects of scale are qualitative as well as quantitative, specifically where
the predator experiences a patchy environment while the prey experiences a collection of
continuous environments. The applied reason for considering models with those features is
that they may give a rough description of certain real systems. The direct inspiration for
the scenario is the work of Kareiva and his colleagues [17, 34] on the fireweed (Epilobium
angustifolium (Onagracae)){aphid (Aphis varians)fladybird beetle (Hippodamia convergens
(Coccinellidae)) system which emerged near Mt. St. Helens after the eruption of 1980. A
specific phenomenon which we address in our models is the observation in [17, p. 185] that,
sometimes larger patches of fireweed sustained lower densities of aphids than smaller patches,
in reverse of the predictions of standard reaction-diffusion theory. Our models suggest that
in certain cases there may be an inverse relation between patch size and prey density due to
the presence of predators. '

Much of the background information we considered in constructing our models is from
[34]; see also [15] for a discussion of other aphid/coccinnelid systems. We shall summarize
some of the pertinent observations. The fireweed grows (among other places) in patches in
the harsh volcanic regions of the blast zone of Mt. St. Helens [17]. The aphids live on the
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fireweed. They disperse slowly, on the order of cm/day, but reproduce rapidly, with up to
10 generations per summer [34]. Ladybird beetles can disperse rapidly, up to 1 km/day (P.
Kareiva, personal communication) and aggregate quickly at aphid colonies via immigration,
with their numbers reaching a temporary plateauin a few hours. The ladybird beetle population
per aphid colony will then typically decrease as the aphids are eaten and the ladybirds emigrate
[34]. These are some of the considerations we shall try to incorporate into our models. We
note that the phenomena we consider are rather different than those studied in [34]. We shall
consider the basic size parameter to be patch size, i.e., the area covered by fireweed plants,
rather than aphid colony size, i.e., number of aphids, and we shall not focus especially on aphid
aggregation. Also, although it is clear from [15, 18, 34] that it is reasonable to hypothesize
that ladybirds aggregate at locations with high aphid densities, we shall also consider as null
models situations where aggregation depends only on patch size, rather than prey density.

2.2. Models. We shall model patches of fireweed as having a uniform density indepen-
dent of time or the density of aphids, but having specified areas and perimeter/area ratios. For
much of our discussion we shall assume that they are squares so that we can focus on the
effects of changing patch size. That assumption is not crucial; any fixed shape would yield
qualitatively equivalent results, but squares are convenient. We shall assume that within each
patch there is an aphid density v(x, y, #) satisfying a KISS-type reaction-diffusion model with
pFedaﬁon. (See [19, 30] and the discussion in [17, 21, 27]. A particular application of passive
diffusion models for herbivorous insects is given in [14].) We assume that in the air above
and around the patches is a population of ladybird beetles which immigrate to the patches in
search of prey and later emigrate. Since the ladybird beetles can fly relatively long distances
we assume that all patches are equally accessible to them; thus, the model for the ladybirds is
a type of island model in the terminology of [17]. Some cases of our models include ladybird
beetle aggregation on patches with higher aphid densities. (Because of our assumptions about
§paﬁﬂ scale we have treated the beetle habitat as patchy (i.e., discrete). Models for aggregation
in continuous habitats are discussed in [18, 33].)

To describe a system of N patches, each a square of side [, and area A,, = 12, we will need
N state variables v, (x, y, t) denoting prey densities in the patches, N more state variables
P,(¢) denoting predator numbers (not densities) in the patches, and another state variable
P4(z), the number of predators in the air. The variable P, () will appear explicitly in only
some of our models, but it is needed in their derivation. We will often assume that there is a
finite total population C of predators so that

N
@1 C=Ps+) P,

n==1
but_fo; some purposes it is interesting to consider the scenario where there is an effectively
unlimited supply of predators. In such a situation any predator that alights would be imme-

diately replaced in the air by another from somewhere else (possibly outside the system of
patches) so that

2.2) P, = constant.
Our basic models take the form
dPp,
2.3 %= -
dt In P A En P, | T

v, 8%, 8%v, Un B,
at “D(ax2 + ay2>+’(1"E)”""c(E)”"
for O<x<l,, O0<y<l,

va(x,y,8) =0 for x=0,1,, y=0,1,.
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(Note that l,": = A, = area of the nth patch.) (Compare the first equation to [16, Eq. (1)] and
the second to [26, Eq. (10)]; see also [15, Egs. 32 and 3b].) The parameters I, and E, describe
the per capita immigration and emigration rates on the nth patch, and will depend on patch
size and geometry. To model predator aggregation we would assume some sort of dependence
on prey density as well. If (2.1) holds then P, dependson C and P;, ..., Py. Much of our
work will be devoted to understanding how different hypotheses about the dependence of I,
and E, and about the size and number of patches and total population of ladybirds influence
the predictions of the model. We shall assume that the predator aggregation response is so
rapid that the predator numbers immediately adjust to prey densities appearing in E,. This
modeling hypothesis is philosophically similar to that used in [22, 23] to model consumptive
competition when the resources have a faster time scale than the consumers; see also the
discussion in [36, Chap. 5] or the comments in [29, p. 205].

The choices of hypotheses which are most crucial in determining the qualitative structure
and properties of our models are the choice between finite and unlimited predator populations
and between dependence on purely geometric factors and dependence on prey densities in the
per capita immigration and emigration rates I, and E,. The simplest case occurs when we
consider an unlimited supply of predators (2.2) with immigration and emigration depending
only on geometric effects. In that case I, and E,, vary only with n, P, is constant, and there is
no density dependence, so that by the first equation of (2.3) we have P, — (I,/ E,,) Pa decaying
exponentially. Substituting the equilibrium P, = I, P4/E, into the second equation for (2.3)
yields

v, 8?v, 8%, Un cPA(I,/En)vn
2. = [—— ] — — _—
@4 ot D(ax2 + ay2)+'( K)"" Iz

Notice that in (2.4) there is no coupling between patches and that the effect of predation is to
decrease the linear term corresponding to the intrinsic rate of growth at low densities in the
logistic equation for the prey. Thus, in this scenario, the number of patches is irrelevant and
we need only consider what happens in a single patch. That will depend on our assumptions
about how I, and E, depend on patch size. In all of our models we can make two sorts of
hypotheses about the geometric dependence of I, and E,, which may be called general and
specific. The general hypothesis is that I, and E,, depend on powers of ,, the linear dimension
of the nth patch. That implies there are constants i and e so that

@5) L=il?, E,=ell

for some p and g. The specific hypothesis is that p = 2 and g = —1 in (2.5). The reason
for that specific hypothesis is that we envision the predators landing at random on the habitat
patches which sustain the prey. Since the predators are envisioned as essentially falling out of
the sky, it is plausible that the number landing in a given patch in unit time might be proportional
to the area A, = 2 of the patch. Once they have landed, we suppose that the predators walk
around the patch looking for prey. If we consider only geometric effects it is plausible that the
predators might wander until they reach the boundary of the patch and then fly away. In such
a scenerio it is reasonable to assume that the emigration rate depends on the perimeter/area
ratio 41,/ A, = 4/1,. Some related ideas are discussed in [16, p. 1815]. (Remember that
we are considering only geometric factors at this point; we have not yet introduced density
dependence.) Thus, our specific hypothesis about the geometric dependence of I and E, is

(2.6) I, =il%, E,=¢e/l,.

(Changing the patch shape would affect i and e but not dependence on [,.)
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If we assume that there is a finite predator population (2.1) then we obtain a more so-
phisticated model where there is a relation between patches. Generally we might expect the
immigration rate to be proportional to P,, the number of predators in the air. If that number
remains constant, it can simply be attached to the constant i. Otherwise, under the geometric
hypotheses (2.5) on I, and E, we have

N
@D I,Py=iPl? =i (C - Zpk) 2,
k=1
so that our model becomes
dPp, ul
2.8) dt" =i (c - Zpk) 12 — (el P,,
k=1

v, %, 8%, Un P,

S _p(L I =8Ny 22

a (a;zfayz)”(l 7)o “(zg)”"
for O<x <, O<y<lI,

v(x,y,8) =0 for x=0,1,,y=0,1,.

If we impose (2.6) we have p = 2, g = —1. This system is coupled in the predator equations,
but those are linear and do not involve the prey. Hence we can analyze (2.8) by determining
the behavior of the predator equations and substituting the results into the prey equations. That
will be an aspect of the analysis in the next section.

The observations in [34] indicate that a realistic model for the fireweed/aphid/ladybird
system should involve predator aggregation in response to increases in prey density. A sim-
ple and reasonably accurate hypothesis about predator behavior is that the emigration rate
decreases with prey density, so that if prey density is high immigrating predators stay in the
patch and consume prey but when the prey density is reduced the predators emigrate and search
for more prey. (Something of this sort is discussed by Kareiva in [15] in relation to equation
(3b) of that article.) Since we are describing the prey in terms of densities and the predators
in terms of populations we shall use the average prey density givenby V,,/A, = V,/ 12, where

Iy I
2.9) Vo= fo fe va(x, ¥, dxdy
= total prey population on patch n at time z.

The basic form of the predator equations in the density-dependent model is then

dP,
.10 dt

= InPA - EnPn/(Vn/An)
= I,Py — 2E, P,/ V,.

As in the predator models without density dependence, if there is an unlimited supply of
predators then P, is constant and we have I, = ilf, E, = elf, so there is no coupling
between patches. Thus we again need only consider what happens in a single patch. 'If
we assume that predator aggregation occurs at a much faster rate than prey dispersal and
dynamics, we can proceed along the lines used by MacArthur [22, 23] and assume further
that the population with the faster time scale “tracks™ the other closely; that is, P, adjusts so
quickly to V,, that the predator population stays at whatever equilibrium would be determined
by V,,. In this case equation (2.10) yields the pseudoequilibrium ‘

(2.11) Py = (I, Pa/ EAI2)V,
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(where I, and E,, also depend on [, as in (2.5) or (2.6)). Substituting into the second equation
of the basic model (2.3) yields

Sy v, 8%, Up cl, P4
@.12) ET‘D(axz t o +r(1-2)m- T e

where V, is the integral of v, as in (2.9). Equation (2.12) can be viewed as a diffusive logistic
equation with an extra nonlocal term describing something of the nature of a decreased carrying
capacity. This is in contrast to the equation (2.4) obtained without the hypothesis of predator
aggregation. In that case the most direct effect of predation is on the intrinsic growth rate at
low densities. We shall return to this point later.

* The most complicated of our models assumes a finite predator population and predator
aggregation. The predator equations then become under hypothesis (2.5)

P, .
7 = ll,j,’PA — elﬁ Pn/(Vn/l;Z;)
2.13) N
=il? (c - ZPk) — %PV,
k:l

Again, we shall assume that the predators “track” the prey densities so that the predator
populations are always at whatever equilibrium is determined by the current prey densities.
The equations for the predator populations are then

N
0=il? (c - Zpk) —elf™2 P,/ V,

(2.14) k=1

for n=1,...,N.
If we solve (2.14) for P, in terms of Vi, ..., V, (which we shall do in the next section) and

call the result P*(V1, ..., Vy) wecan substitute into the second equation of (2.3) and obtain
the system

2 2 n P*(Vi,...,. W,
%zp(av"-}-av")ﬁ-r(l—%)vn———————————c "(112 )v,,
n

(2.15) for O<x<l,, O0<y<l,

Up(x,y,8) =0 for x=0,1,, y=0,Ip,
n=1,...,N.

The system (2.15) is a reaction-diffusion system with equations coupled via the nonlinear
nonlocal terms involving P}(Vy, ..., Vy). The analysis of this system is nontrivial and we
defer it to the next section. (P* can and will be computed explicitly.)

3. Analysis and interpretation of the models.

3.1. An overview and listing of cases. This section is devoted to the analysis and in-
terpretation of the models constructed in the last section. The focus will primarily be on
examining the effects of changing the size of patches on the predictions of the models. We
shall see that the relationship among patch size, persistence of the prey populations, and prey
densities (when populations persist) can be much more delicate and complicated than those
obtained from simple KISS-type reaction-diffusion models for the prey alone. As noted in




PREDATOR-PREY SYSTEMS AT MULTIPLE SCALES 263

§2, the models we consider can be classified according to the assumptions about predator
numbers and aggregation or the absence thereof. The number of predators might be viewed as
unlimited or finite. If it is finite, we could consider cases where the total predator population
is fixed or where it depends on the size or number of patches. If we think of both patches and
predators as being uniformly (perhaps randomly) distributed throughout a large area, then the
numbers of both predators and patches in our models will be proportional to the size of the
part of that large region which we choose to consider in the models. In that case the total
number of predators will be proportional to the number of patches. If we think of the number
of patches as fixed with the patches embedded in a larger environment and rescale the size of
the patches and their surrounding environment, an initially uniform distribution of predators
would lead to a total number of predators that would be proportional to the overall area of the
environment and hence to the area of the patches. Thus, if we consider cases where the total
predator population C is finite but depends on the number of patches, we should assume

3.1 C =CoN,

where N is the number of patches, whereas if we consider cases where the number N of
patches is fixed and the total predator population C is finite but depends on the total area of
patches, we should assume

N
3.2) C=Co (Zz}) ,

j=1

where /; describes the linear dimension of the jth patch.

In all of our models the coupling between patches occurs only in the equations for the
predator populations, and those are coupled only in the cases where the total predator popula-
tion is finite. Thus, in the cases where we assume an effectively unlimited supply of predators
in our system (arising perhaps from the presence of a large nearby source population), the
patches are independent so we need only consider a single patch. This simplifies the models
considerably. v

We have four cases of our models to consider. We shall first consider the two cases
without aggregation, that is, where the predator per capita immigration rates depend only
on geometric factors. We consider the possibility of an unlimited supply of predators and
also the possibility of a finite total predator population. In the case of a finite total predator
population, we focus primarily on the situation in which (3.2) obtains; i.e., the total predator
population is proportional to the total area inhabited by the prey. After that we shall examine
the remaining two cases under which we have the assumption (probably more realistic) that
predators aggregate in response to prey densities. Again we shall consider the possibility of
both an unlimited supply of predators and a finite population, and again when we consider the
case of a finite population, focus chiefly on the subcase in which (3.2) holds. In all four cases,
we assume p and g in (2.5) are such that

3.3) p—gqg>2.

We make this additional assumption for several reasons. First, notice that in the case of our
specific hypothesis (2.6), p — ¢ = 2 — (~1) = 3, so that (3.3) is satisfied. Second, in each of
our four cases, we need (3.3) in order to see that the predation can result in an inverse relation
between patch size and mean prey density. Moreover, in each case, the mathematical analysis
is essentially the same whether we assume (2.6) specifically or (3.3) more generally. Finally,
(3.3) allows for the likelihood that the specific hypothesis (2.6) is only approximately correct.
(For instance, it is clear that in the fireweed-aphid-ladybird beetle system the predator can
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leave a patch from its interior, although ge olzzeﬁﬁor)l of Kareiva and his collaborators is
i more likely to leave from the edge. .

et ?t%;lldattﬁnliflirthat the dif?erent hypotheses we make will lead to significantly c}lffereflt

predictions from the models. We now analyze and interpret 'each of the four cases basmalllzf a111;

tum, following some basic mathematical background material common t9 a11 the cat.lsles. na

but the first case (i.e., unlimited predator supply with.n.o a_ggregam?n) add'monal mathematic !

development is required, and so we present the requisite information as it becomes pertinent.

3.2. Some mathematical background. Most of the effects of patch size on the prey in

our models depend on the following result.
THEOREM 3.1. Let D, R, and B be positive constants. The model

v 8%v Bzv) 2
—— e 4 ——= } 4+ Rv — Bv
ot D(8x2+8y2

G4 for 0<x<l, O0<y<l, t>0

v=0 for x=0,1, y=0,1

has a unique equilibrium v*(x, y) with v*(x, y) > 0 for 0.< x <land0 < y < I and with
v—>vrast = oo ifv(x,y,00 =0, v(x,y,0%#0 provided

(3.5) R — (27®D/1% > 0.

The equilibrium v*(x, y) increases for ea;'zh (x,y) if R is increased. If (3.5) does not hold
iti utions of (3.4) approach zero ast —> 0.

then;illfz):rslfw';;: iluantityfz(rrzl)) / fzpis the principal eigenvalue for —D(a; / ax? + 8? / Zi.yza)1
on the square of side  under the boundary conditions of (3.f1). So 27* is Fhe p;m{:{p
Dirichlet eigenvalue of —(32/9x? + 8%/8y?) on the square of side 1. If the basic un v:; ymgf
shape of the habitat patches is changed and Ao denotes the prmc1p2al Du;cfhlet eigen hat;e :d
—(32/8x2 + 9*/8?) when the linear dimension is 1, the value 27>D/1” in (3.5) 5 c Ingth d
to DAg/ 12, and this is the only effect of altering the basic shape of the hfibltat patc e:sval !
case of circles, Ag is the square of the first zero jo of the Bessel function Jy. This value is
appfzmtgzjﬁ is a version of the type of results for KISS mf)del_s that were introduc}eed
in[19, 30]. (3.5) gives the idea of a minimum characteristic length ('m this case{ = n'«ed/Z D /[ 32
required to sustain a population. Much more general r&sul‘ts qf this sort are dlsczfﬂ 1;1f

5]; see also [21]. In particular, as noted, there is no qualitative .change in the.r tsR v;lﬁ
have a patch shape other than a square. In our models ’{he quantity corr&spon{:lmge(tlo e
often depend on ! and other parameters, SO that (3.5) will lead to x?:nore comphcaj;:r SOesul‘:s
dependence on /. The fact that v* increases with R (and decreases with B) follows from r

in [6, §4] based on sub- and supersolution methods. o _
[ Fir ]some purposes we will be interested in how the equilibrium v* in Theorem 3.1 depends

on the parameters in (3.4). 3 '
THEOREM 3.2. For a > 2m? let 6,(x, y) be the positive solution of

36 0% )
—+-—+af—-6*=0
dx2 + 3y? +

9 in 0,1)x @O, D,
6(x,y) =0 for x=0,1, y=0,1,

whose existence is implied by Theorem 3.1.
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(i) If v* is the positive solution of

aZv* azv*
(———,; +—5 ) +Rv*—Bv?=0
G.7) ox%  By?
in (0,0) x (0,D),
v*(x,y) =0 for x=0,I, y=0,I,
then
(3.8) v*(x, y) = (D/BI®)6rz/p(x/1, y/ ).

(Note that a = RI*/D > 2n? is equivalent to (3.5)).
(ii) Let the total population corresponding to v*(x, y) be denoted by

[ pl
3.9 V* = / / v*(x, y)dxdy.
. Jo Jo

The average prey density V*/ 12 satisfies
(3.10) V*/1*> < R/B;

infact, 0 < v* < R/Bon (0,1) x (0,1). Ifin (3.7) we have R = R() and B = B(l) such
that for large I (3.5) holds, B(I)I*> — oo, and the limit lim;_, o, R(1)/B(l) exists, then

(3.11) Jlim v/ = llixg R()/BQ).

(If R(D)/B() — oo asl — oo then V*/1* — o0 also.)

Discussion. Part (i) follows from the uniqueness of v* (which follows from Theorem
3.1) and the observation that if the function # defined in (3.6) is rescaled as in (3.8), then
the resulting function (D/BI%)0gp /p(x/1, y/1) satisfies (3.7). The fact that v* < R/B is
a sta_ndard result in the theory of diffusive logistic equations and follows directly from the
maximum principle, as in [3]. Integrating over (0, !) x (0, [) and dividing by /2 yields (3.10). If
weletx’ = x/l, y' = y/linthe expression on the right in (3.8) we have v*(x, ¥) = w(x’, y"),
where w can be seen (after some calculation) to satisfy

D [ 92w 9w + RO 2

BOE [@x2 " Gyn2)” B ¥
in (0,1) x (0, 1),

wx’,y) =0 for x=0,1, y=0,1.

=0
(3.12)

(Hence w('x’, y'? = (D/Blz)emz/p(x', ¥"), in agreement with (3.8)). Suppose limy.,q
R()/B(l) is finite and let Ko = lim;_, o R({)/B(l). For any ¢ > 0 we can choose [ large
enough that

3.13) Ko—e < R({)/B() < Kp+e.
Letw > O satisfy

D *w + 82w
B2 \ (8x")* ~ (3y")?
on (0,1) x (0, 1),
W=0 for x=0,1, y=0,1,

)+(Ko+s)’1b'—”1172=0

3.149)
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and let w > O satisfy

= azyl 322)_ 2
B2 ((ax')2 * <ay'>2) +(Ko—e)w—w?=0
in (0’ 1) X (O, 1),

w=0 for x=0,1, y=0,L

(3.15)

The method of sub- and supersolutions and the uniqueness of positive equilibria for diffusive
logistic equations imply that w < w < W when (3.13) holds, since w is a supersolution to
(3.15) and a subsolution to (3.14). See [3] for discussion and references. The method of sub-
and supersolutions was used in various ways in [1, 2, 6, 21] and is discussed at some length
in [9, 20].

Tt follows from results of [3, §4] thatas] — co, W — Ko+gandw — Ko—¢ uniformly
on compact subsets of (0, 1) x (0, 1). (This requires D/ B()I? — 0asl — co.) Thus, for any
compact subset of (0, 1) x (0, 1) wehave Ko —¢& < w < Ko+¢ forl sufficiently large. Since
¢ > 0 was arbitrary, we conclude that w — Ko = limj,o R(})/B() asl — o0, uniformly
on compact subsets of (0, 1) x (0, 1). Since w is bounded (e.g., by 0 < w < Ko+ 1) forlarge
1 and the square (0, 1) x (0, 1) has unit area, we have

1 pl
(3.16) lim [ fw(x’,y’)dx’dy’=llimR(l)/B(l).
o Jo —»00

I-»c0

On the other hand,
1 pl
V12 = (1/1%) f f v*(x, y)dxdy
o Jo

1 1
(3.17) =(1/1% / / wx’, y)Pdx'dy’
0 0

1 1
= f [ w(x', y)dx'dy’
1} 0

since the Jacobian of the change of coordimates (x,y) + (x',¥) = (&/L,y/D) is
(x, y)/ox',y) = [2. Hence (3.11) follows from (3.16), (3.17). If R())/B() — oo as
I — oo we would use the comparison v* > w > withw — Kjasl — o0, Ki arbitrarily
large, then use (3.17).

3.3. Unlimited predator supply, no aggregation. In this case we need consider only
a single patch, since patches are not coupled. The model is given by equation (2.4); that is,
we assume (2.2) and then substitute the equilibrium for the predator equation of (2.3) into the
prey equation for (2.4). (The predator equilibrium is globally asymptotically stable and does
not depend on the prey density.) Under hypothesis (2.5) we obtain

v ?v 8% rv? . —g—2
5;=D(5;f+5‘y'2')“’”‘?—”’f*<’/e>”’ T

for 0<x<l, O<y<l, t>0,

v=0 for x=0,1, y=0,L
The quantity corresponding to R in (3.4) is
(3.18) R =r —cPs(i/e)lP797%
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the inequality corresponding to (3.5) and characterizing when the prey can persist is
r—cPa(i/e)P~92 —272DI% > 0,
or equivalently

(3.19) r > cPy(i/e)lP9"% 4 272 D12,

It is clear that if (3.19) is to hold / cannot be too small, since I™2 — co as] — 0. On the
other hand, since p — g — 2 > O then I7"92 — oo as] — 00, and [ cannot be too large.
The parameter dependence of (3.19) can be described graphically by noting that (3.19) will be
satisfied when 7 > F(I) = cP,(i/e)lP~9-2 + 272 DI~2. The case yields a maximum patch
size which will sustain a prey equilibrium as well as the usual minimum patch size.

3.4. Equilibrinm and pseudoequilibrium for finite predator populations. The rele-
vant models are (2.8) and (2.13)-(2.15). The total predator population C may be fixed or may
vary with patch size or the number of patches as in (3.2) or (3.1), respectively. The preda-
tor equations in (2.8) are a coupled linear system of ordinary differential equations. Before
proceeding further we must analyze that system. We shall see that it always has a unique
asymptotically stable positive equilibrium. In (2.13) there is a corresponding “pseudoequilib-
rium” for any fixed prey populations Vi, ..., Vy.

Let P* = (P}, ..., Py;) be the equilibrium for the predator equations in (2.8). Then

N
(3.20) 0=il? (c-ZPk*) —ellPf, n=1,...,N
k=1
or equivalently
N
(3.21) 0= (i/e)lP™ (c - ZP,;“) —Pf, n=1,...,N.
k=1

Summing over ~ in (3.21) and noting that if we sum over » then n and k are interchangeable
as indices of summation, we find

N N N
(3.22) 0= (Z(i /e)z,f‘q> (C - ZP;) - PR,
k=1 k=1

k=1

so that we can solve for 3"p_| P and obtain

v ol /e)}N:z,f“q
Y R=—-r

k=l 1+ (Gi/e)y 1™e
k=1
Substituting into (3.20) and solving for P yields

. l,f~q
(3.23) P,,*:-—Nii-—-—, n=1,...,N.
e
k=1

We have the following result on stability.
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THEOREM 3.3. The equilibrium P*of (2.8) given by (3.23) is asy.r.npto_tically stable.
Proof. Let P satisfy (2.8) and define 7 = P — P*. Observe that Z satisfies
dz -
3.24) i 0z,
i ix wi i iven by —(ilf + elt) and with
here Q is the N x N matrix with the nth diagonal entry given (iln +eln) @
:Vll :he gther entries in the nth row equal to —il7. To show that the ethlznum P*is stab}ie
we must show that 7 — 0 as ¢ — oo. To do that we shall use Lyapunov’s secon_c.l method.
Specifically, we shall construct a Lyapunov function E(Z) so that E(Z) > 0 fqr 7#0 1}::;
dE/dt < 0 on trajectories of (3.24) with Z = 0. We observe that the matrix Q in (3.24)
the form

—ai~-b  —a - —an
—-ay —ay—by --- —az

—ay “ee —ay — by

where a, = il? >0, b, = el > 0. Let S be the positive dc?ﬁnite (diagc?nal) N x Naumatn;x
where for each n the nth diagonal entry is 1/a, a{‘ld the enm&s_‘off the diagonal are ll ‘%?fg"
Since 1/a, > 0 the matrix S is positive definite so 7T sz >_'0 forz # 0: fwelet f‘ gz‘) s-;agm t;
then computation shows that dE/dt = T o7 S + SQ)z. To ?stabhsh asymptotic

we need only show that the matrix Q7 § 4+ SQ is negative definite. We have

1+bi/ay 1 . 1
1 14+byfay --- 1
0TS+ 50 =-2 ) ) . ,
1 . 1+ b/ay
so that )
N N N ,
TS+ S0E =-2[Y 2 +2 Y tnta+ ) (/a2
= mn= =1
.—n_l ;:#" 1 n
’ 8 N
(3.25) =—-2{@+-+ ZN)Z + Z(bn/an)zz]
n=1

N
< =2) (ba/an)z3-
n=1
Thus Q7 S + SQ is negative definite and it follows by standard Lyapunov theory that the

uilibrium for (2.8) is stable. '
. Remark. In the case of predator aggregation the predator equations are (2.13). For any ..

i uld have the same structure as
fixed values of the prey populations V, the system (2.13) wo :
(2.8), so if the prey populations were held fixed the system (2.13) would also have a unique,

stable equilibrium P* given in terms of the prey populations Vi by
iCV,IE™1?

(3.26) F=— R )
iy W Vete
k=1
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‘We shall sometimes need to rewrite (3.23) and (3.26) in slightly different forms. The analysis
of (2.13) with V1, ..., Vy fixed is done in exactly the same way as that of (2.8). Of course,
Vi, . .., Vy will generally vary with time, but our modeling assumption is that predator aggre-
gation occurs so rapidly that predator populations at time # remain at the “pseudoequilibrium”
corresponding to the values of Vi, ..., Vy at time z. Our analysis of the remaining cases will
make systematic use of (3.23) and (3.26).

3.5. Finite predator populgﬁon, no aggregation. In this case the relevant equations
are (2.8). The predator populations tend asymptotically to the equilibrium given by (3.23).
Substituting into the prey equations yields

dv, %, 8% Up icClP™172
=D< + ")+r(1—E>v,,—- i R

9x2 = 9y? N
iZZ}:"q +e
for O<x<l, O0<y<l, =

v(t,x,y) =0 for x=0,l,, y=0,1,, n=1,...,N.
For each n, (3.27) is a diffusive logistic equation which can be written in the form (3.4) with

icclf™9?
——
iy e
k=1

Notice that R, the intrinsic growth rate at low densities, is reduced by the presence of predators.
The behavior of the equations in (3.27) depends on our assumptions about how the total
prfadator population C depends (or does not depend) on the size or number of patches. The
criterion (3.5) using R from (3.28) will determine whether a given patch would sustain a prey
population. Explicitly that condition for the nth patch is

(3:28) B=r/K, R=R,=r~-

icCIE™?72 272
lZ

r—
N
. e n
zE P i+e
k=1

We shall.ﬁrst briefly consider the case where the total predator population remains fixed
as the patch size varies. To understand how patch size affects the predictions of the model, let
us suppose that the size of the first patch varies but the others do not. It is convenient to write
(3.29) forn =1as

3.29) D=>0.

1 icCl¥™ + 272D

(3.:30) > = = g(l).
i+ <iZl,f'q + e)

k=2

Since the expression in brackets on the right side of (3.30) is always bounded in I; for any
pandg (ngt Just for those satisfying (3.3)), it follows that (3.30) will hold for /; large since
the expression in brackets is multiplied by 1/ l}'. Thus, in this case, any sufficiently large
?atch must sustain a prey population. This is not surprising since if the number of predators
is fixed and the size of a patch increases enough, eventually the average predator density must
approach zero so that the effect on the prey becomes negligible. On the other hand, when (3.3)
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holds, i.e., p —q > 2, the situation for moderate values of /; is simple in some cases and more
complex for others. The reason is that the right-hand side of (3.30) fails to be monotonically
decreasing for all [; > O if the predatory impact cC is large enough. For some values of r,
this feature results in “excluded middle” ranges of /; for which corresponding patches do not
sustain prey populations even though there are patches of smaller and larger sizes which do
sustain prey populations.

We leave the analysis of the preceding situation to the interested reader and turn to the
situation where C depends on the total area of patches as in (3.2). In this case (3.29) becomes

N
icCo | Y B) 1
k=1 27°D
+ 2
Zl

N
iZl,f_q —e
k=1

r>

(3:31) Y
icCol?™? +icCol? 2 S 12
N ! ! ,Z:; g 272D
= = z
i+ iy i +e)
k‘._.l

The first observation is that again the critical lower limit on the size of patch which can sustain
a prey population is larger than the critical size determined by > 272D/ 12 in a simple KISS
model without predators. This is similar to the case where the total predator population isa
fixed constant. The second observation is that as [; — oo, with Iy, .. ., Iy held fixed or taken
equal to Iy, the right side of (3.31) has a limit ¢Co, so to conclude that all sufficiently large
patches would sustain a prey population we would need r > c¢Co. If r < ¢Co then there may
in fact be no patch size which can sustain a prey population. (The same turns out to be true
if r == cCp but that requires more delicate analysis.) The general case of (3.31) is somewhat
complicated to analyze, so let us consider the special case where all the patches are the same
size. If I} = I = - - - = Iy == [ then (3.31) becomes

icCoNI1P~9 272
r> NP 1o + B D = h(l).
The sign of #'() is determined by the expression (obtained by differentiating, combining
fractions, taking the numerator, and simplifying)

icCoN(p — q)el?~9%2 — 4x*(iNIP~9 + €)*D.

(3.32)

This expression is negative for  ~ 0 and for [ ~ coas p — g > 2, but will be positive
for some values of I if ¢Cp is large enongh. Thus, the sort of qualitative behavior noted
above for the case of C fixed, namely, having patches of intermediate size not sustaining prey
populations while having patches of both smaller and larger sizes sustaining prey populations,
can also occur if (3.2) holds. The primary difference between the cases of fixed C and.
C = Co “times” total patch area is that in the first case any sufficiently large patch will
sustain a prey population, while the behavior of the second case depends in a more delicate
way on the parameters. In particular, there may be no patch size which can sustain a prey
population, or there may be an excluded range of patch sizes. There may even be situations
where the total predator population is proportional to the total patch area in which there is a
maximum patch size that can sustain a prey population. For example, (3.32) will be satisfied
forl = 1ifr > icCoN/(iN +¢e) + 212D, but icCoN/(iN + €) 4 272D < cCy provided
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272D(@N + €) < ecCy, which will be satisfied if cCy is large or D is small. In that case
values of r in the interval ((icCoN/(iN + €)) + 272D, cCp) would admit a positive prey
equilibrium for some values of / (specifically for / = 1) but not for large /. Thus, there would
be a maximum patch size which could sustain a prey population.

In this case the effective carrying capacity R/ B is given by

K icCoNIP™1
R/Be= = |p—-22200700 K
/ r (7' iNlP—q +e> <

Asl] — o00,R/B — K(1 — (¢Cy/r)), so we would always expect the effective carrying
capacity to be less than K if the number of predators is proportional to the total patch area. As
we saw already on the basis of examining R alone, if r < ¢Cy then sufficiently large patches
will not sustain a prey population. '

3.6. Unlimited predator supply with predator aggregation. In this third case the basic
equations are (2.10)-(2.12). Recall that V,, represents the total prey population on the nth patch,
that is, V, is the integral over the nth patch of the density v,. As in the scenario of an unlimited
predator supply without aggregation there is no coupling between patches, so we shall consider
only a single patch of side I. Assuming that the immigration and emigration rates obey (2.5)
and (3.3), we have the pseudoequilibrium predator population on the patch given by (2.11),
which becomes

(3.33) P = (i/e) P4IP7172Y,
leading to the prey equation
v v % v
3.34 — =D+ — L P i [e)IP—a—*4
(3.34) - (8x2 + ayz) +r (1 K) v — cPali/)IP~I~*Vy

via (2.12). We assume as always that v = O on the patch boundary, so that v(x, y, #) = 0 for
x =0,lory = 0,]. Equation (3.34) is a reaction-diffusion equation with a nonlocal term.
‘We shall see that some of the fourth case scenarios also give rise to such equations but with
different dependence on V. For a single patch the models we shall consider all take the form

odv 3%y 3%
+ —— | + Rv — F(V)v — Bv?

B 8x2 " ay?
(3.35)
for O<x <!, O<y<l, t>0,
vix,y,8) =0 for x=0,I, y=0,1,
with the additional property
(3.36) F0)=0, F/(V)>0 for V>0.

Equation (3.35) resembles the standard reaction-diffusion equation (3.4) and turns out to have
similar properties. We have the following analogue of Theorem 3.1.

THEOREM 3.4. Under hypothesis (3.36) the model (3.35) has a unique equilibrium
v (x, y) with v™*(x,y) > 0for0 < x <l, 0 <y < lsuchthatv — v ast - co
for any v satisfying (3.35) with v(x, y, 0) = 0, v(x, y, 0) 5 0, provided (3.5) holds; that is,

R — (27*D/1* > 0.

If (3.5) does not hold then all solutions of (3.35) tend asymptotically to zero ast — oo. The
equilibrium v**(x, y) can be characterized in terms of solutions to (3.6) as

v™(x, y) = (D/BI*0g-gyr/p /1, /1),

|
|
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where Q is determined by the relation

1 )
(3.37) F(V*)=F ( /0 /O v**(x,y)dxdy) =0,

which (in view of (3.17) applied to v**) is equivalent to

1 1
(3.38) F (]; L (D/Blz)O(R_Q),z/D(x', y')dx’dy’) = Q

By Theorem 3.2, since Q > 0, v*™* < R/BsoV*/I* < R/B.
Remark. This result indicates the crucial difference between our purely geometric models
for predator immigration/emigration and those of our models which incorporate predator
aggregation depending on average prey density. The second sort of model typically has the
form (3.35) with (3.36) satisfied and hence predicts the same minimum patch size for the
prey as do standard KISS models with no predation. This is in contrast with the case of
the density-independent models discussed in the preceding sections, where the presence of
predators always raised the minimum patch size needed to sustain a prey population. In fact,
because we consider only models where (3.36) holds, we can write the terms describing the
prey population dynamics as (R — F(V) — Bv)v, where F(V) — 0 and Bv — Oasv — 0.
Thus the behavior of those terms at low prey densities is essentially determined by the linear
growth rate Rv, which is unaffected by the presence of predators. (Recall that in our models
of predator immigration/emigration without dependence on the prey density the prey growth
rate at low densities was reduced by the presence of predators.) Biologically, this distinction is
sensible because the models with predator immigration/emigration depending on prey density
assume that predator emigration rates rise toward infinity as the prey density tends toward
zero, so the effects of predation on prey populations at low densities become negligible. We
shall see, however, that as [ increases so that a larger prey population would be sustained on
the patch in the absence of predators, the effects of predation in models such as (3.35) become
more pronounced and may imply qualitative behavioras{ — oo for the equilibrium v** which
is quite different from that for models with no predators. :
Discussion of Theorem 3.4. The key point in analyzing (3.35) is to observe that the
presence of the nonlocal term F (V) does not invalidate many of the arguments used to study
standard reaction-diffusion equations. In particular, since| V |< 2 sup | v | themapping v —
F(V) will be well defined and as smooth as F on function spaces which embed in C ([0, I] x
[0,1]). Those include the Sobolev spaces W27 for p large enough and the interpolation
spaces X* obtained from them via fractional powers of the Laplace operator, as used in [3,
5, 10, 11]. Thus the existence and uniqueness of solutions to (3.35) can be obtained via
the same functional analytic arguments (e.g., the Banach fixed point theorem for contraction
mappings, semigroup theory, etc.) used in those references for standard semilinear parabolic
(i.e., reaction-diffusion) equations. Furthermore, any solution of (3.35) can be interpreted as
satisfying a linear parabolic equation .

82 92
%;’-: (é;—g-—{—g;-z-)-i-f(x,y,t)v for 0<x<l, O0<y<l, t>0,

which satisfies a maximum principle [9, 20, 28, 31, 35] so that v(x, y,#) = 0 ifv(x,y,00=0
and in fact v(x, y,#) > 0forO0 <x <[, O <y <land? > 0ifv(x, y,0) £ 0. Finally, if u
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and v satisfy
2u  %u
Uu; — (5—;+5;§)—Ru+F(U)u+Bu2
(3.39) { 3%y 8%
= U~ (‘EEE—‘“&—yi) — Rv+ F(V)v + Bv?
| on (0,1) x (0,1) with u(x,y,?) =v(x,y,t) =0 for x=0,I, y=0,I

and we have u(x, y, 0) > v(x, y, 0) then either u(x, y, #) > v(x, y,#) forall (x, y) € (0,]) x
(0, ) andt > Ooru(x, y, t) = v(x, y, t) forall (x, y, ¢). This comparison principle follows as
in the usual reaction-diffusion case from the Nagumo-Westphal lemma and/or the maximum
principle. Comparison principles.are discussed and applied in general contexts in [9, 20,
28, 31, 35] and in more specific situations in [1, 2, 6, 7, 21]. The results in [7] apply to a
competition system with nonlocal terms. ,

The significance here is that we can apply the method of sub- and supersolutions used
earlier in this section to study (3.4) in our study of (3.35). As before, we can follow the
reasoning in [1, 2] (see also [6, 9, 13, 21]) and conclude that solutions of (3.35) with initial data
starting at sub- and supersolutions to the corresponding steady state problem must converge
monotonically to equilibria of (3.35) as ¢t — co. We observe that if v satisfies (3.35) and
w is a solution to (3.4) with w(x, y,0) > v(x, y, 0) then w is a supersolution to (3.35). It
follows from Theorem 3.1 that if R — 22D/ %) < 0 then all solutions of (3.4) tend to zero
ast — 00, so all solutions of (3.35) must as well. On the other hand, since F(s) — 0 as
s = 0, for R — 272D/1?) > 0 and ¢ > O sufficiently small we have that the eigenfunction
e sin(r+/Dx /1) sin(+/Dy/1) is a subsolution to the equilibrium problem corresponding to
(3.35), as for (3.4). (See [6].) Thus, for R — 272D/I? > 0 equation (3.35) has the property
that all solutions with positive initial data tend asymptotically asz — oo toward a set bounded
above and below by maximal and minimal positive equilibria. This follows becanse all positive
solutions of (3.35) can be bounded above by solutions whose initial data is a large constant
and hence a supersolution to the equilibrium problem and bounded below by a solution whose
initial data has the form & sin(r/Dx/ I) sin(rr+/Dy/ I) with ¢ small and hence is a subsolution
to the equilibrium problem.

To finish our analysis we must determine the equilibria of (3.35). We have already seen
that for R — 272D/1? < 0 all positive solutions must decay toward zero as  — co. Suppose
R —272D/I? > 0 and notice that any equilibrium for (3.35) must satisfy the equations

?v 9%y
O=D(5;-2-+5-;5) +[R — F(Z)lv — Bv?
(3.40)
for 0<x<l, 0<y<l,

v(x,y)=0 for x=0,l, y=0,I, and
1l
(3.41) Z=f ]v(x,y)dydx:V
o Jo

and any solution to (3.40), (3.41) defines an equilibrium of (3.35). To see that (3.35) has the
unique equilibrium given in Theorem 3.4, we observe that aslongas R—2n2D/1?*—F(Z) > 0
the existence a unique equilibrium v%(x, y) > 0 for (3.40) is guaranteed by Theorem 3.1. If
we take Z = 0 we have F(Z) = 0so

1 pl
(3.42) Z=0< fo ./‘; v3(x, y)dydx = V3.
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If we then allow Z to increase, the left side of (3.42) increases. On the other hand, R — F(Z)
decreases, so by Theorem 3.1 the unique positive equilibrium v% of (3.40) also decreases. We
always have v} (x, ¥) < v5(x, y). Aswe increase Z the left side of (3.42) increases without
bound while the right side decreases. Hence, equality must be achieved for some value of
Z. For that value of Z, (3.41) holds and we have an equilibrium v** = v}. Increasing Z
further would further reduce v*(x, y) so that (3.41) would fail, so the value of Z for which
(3.40), (3.41) are both satisfied is unique and hence so is the equilibrium v** = v}. If we let
O = F(Z) for the value of Z for which v} = v** thenthe remaining characterizations of v** in
Theorem 3.4 follow from Theorem 3.2. (We note that an alternate approach to the analysis of
the equilibrium problem for (3.35) would be to use the bifurcation theoretic methods discussed
in [3, 5]. Those methods apply with only minor modifications to the present situation.)

We now return to the question of determining how the model (3.34) behaves as [ — co.
By Theorem 3.4, (3.34) has a unique stable positive equilibrium v** if r — 272D/ 1? > 0.
Since v** is positive on (0, 1) x (0,1) and is zero on the boundary, we have that the outward
normal derivative dv**/8n is nonpositive on the boundary of the domain (0, 1) x (0, I). Thus,
if we write the equilibrium equation in the form

2, %% 2, %%
D 0“v v
9x2 0y2

) =ry™* — %(u*’")2 — cPA(i /)P V™,

integrate over (0, 1) x (0, I), and apply the divergence theorem to the derivative terms on the
left side, we obtain the inequality

1 1
(3.43) 0<rvV*— -'I-(- / f (™)2dxdy — cPa(i[e)IP~9~4 (V™).
0 0

If we apply the Cauchy-Schwarz inequality to the integral of (v**)? we obtain

1 pl 2 1 pl 1 gl
(V) = ( f f v**dxdy) < ( f f (v**)zdxdy) ( / f ldxdy)
o Jo o Jo o Jo
1 pl
=]? f f (v*™)%dxdy.
o Jo

Dividing (3.44) by /2 and using the result in (3.43) yields the inequality

3.449)

I
_ KI?
Since V** > 0, (3.45) implies that

(3.45) 0 < rV* — ——(V**)% — cP4(i /)P 974 (V*").

.
= [G/EP) + cPaG/alr1—]

(3.46) v

Since p — g > 2, it follows from (3.46) that the average prey density V**/1? tends asymp-
totically to zero as I — oo. (f p — g > 4, then the total prey population V** itself tends
asymptotically to zero.) Consequently, there must be an inverse relation between patch size

and average prey density.

3.7. Finite predator population with predator aggregation: A single patch. In this
case the relevant equations are (2.13)-(2.15) and (3.26). We shall first consider the case of a
single patch since it illustrates many features of the general case and since the case of several
patches will require some additional mathematical analysis. For a single patch, substituting
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the predator pseudoequilibrium P* given in (3.26) (with N = 1) into (2.15) yields

v v 8% v icCVIP1~4y
ot (ax2 +'6y2> + g ( K) v i1P—9-2Y + e
(347
for 0O<x<l, O0<y<lI, t>0,
v(x,y,t) =0 when x =0,/, y=0,1.

(Recall that C is the total predator population and ¢ describes the rate at which predators
consume prey.) Equation (3.47) has the form (3.35) and so can be analyzed via Theorem
3.4. In this case the variables in Theorem 3.4 can be takentobe R = r, B = r/K, and
F(V) = icCIP~9*V/(ilP~972V + ¢). If C, the number of predators, is independent of  we
can observe that F(V) < ¢Cl~2 forall V > 0, so that the quantity Q in (3.37) of Theorem
3.4 satisfies Q < ¢Cl~2, and thus by Theorem 3.4 we have

v (x,y) = (DK/flzze(R-Q)ﬂ/D(x/l, /0
> (DK rI®0pr—ccyp /1, y/1) = ulx, y),
where u(x, y) satisfies (by Theorem 3.2)

%u 9% ru?
0= —_— —— — 23Ty e e
b ( 2t ay2> [r = (cC/1u — = on (0, x O,D),

u(x,y) =0 for x=0,1, y=0,1.
By (3.11) of Theorem 3.2 we have

) )
(3.48) Jim (1 /15 f f u(x, y)dydx = K.
a %] 0 0

On the other hand, v** is a positive subsolution to the basic equation

v 8% v
=D|—+— - =)o i
0 (ax2+ay2)+’(1 Z)v in @.0x @D
with the same boundary conditions, so we have v** < v < K where the second inequality
follows by Theorem 3.2. Thus, in this case, we have V**/12 bounded above by K and below
by the quantity in the limit in (3.48). Since the lower bound on V**/ 12 given by the expression
in (3.48) approaches K as ! — oo we must have

lim V*/1? = K.
I->c0

This is not surprising since for a sufficiently large patch the effects on the prey from any fixed
number of predators can be expected to become negligible. If we allow the number of predators
in the system to increase in proportion to patch area so that C = Col? then the asymptotic
behavior as [ — oo may change. There are two cases, namely, 7 > c¢Cp and r < ¢Cy. (Since
we assume here that p — g > 2 the powers of / occurring in the expression for F(V) in this
case will tend toward infinity as [ — 00.) We have F(V) = icColP~9-2V/(ilP~972V +¢).
Let us consider the case r > ¢Cy. In this case we first observe that F(V) < ¢Cy, so that any
equilibrium solution to (3.47) is a supersolution to '
2w w ruw?
3.49) 0=D (-3;.2- + Fy—f) + (r — cCo)w — N on (0,1) x (0,D),

wx,y) =0 for x=0,I, y=0,1L
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I ] is large enough then r — cCp — 272/ 1% > 0, s0 (3.49) has a unique positive solution w*
and hence v** > w* > 0 on (0,1) x (0, [). Furthermore, by Theorem 3.2, '

1 pl
(3.50) (1/12)/0‘ ./0 w*(x, y)dydx = [1 — (cCo/r)IK >0

as [ — oo, so for I sufficiently large we must have V**/12 > (1/2)[1 — (cCo/)1K > 0, and
hence we must have limy_, o F(V**) = ¢Cj since [P-4-2y** 5 coasl — oo. It follows
that for any & > 0 and [ sufficiently large, v** is a subsolution to
2 2
0=D (E—‘;’- + 9——’;
(3:51) ox* = dy

w(x,y) =0 for x=0,/, y=0,L

2
> (r—-cC0+e)w——r—-Iué- on (0,1) % (0, 1),

For large [ (3.51) will have a unique positive solution w7, and since v** isa subsolution (and
any large constant is a supersolution) we have v** < w;. By Theorem 3.2,

1 )
(3.52) Jim 1/ fo fo W (x, y)dydx = K(r — cCo + &)/,

so using w* < ! and applying (3.50) and (3.52) shows that for any ¢ > 0
E[1 - (cCo/r)] < liminfV™/ ?
< limsupV*/1? < K[1 — (cCo/r) + (/)]

l->00

Since (3.53) must hold for any & > 0 we may conclude lim;_, V*/1? = K[1 — (cCo/1)]-
We see that the effect of predation in this scenario is to reduce the average density of the
prey, but not so much that the density declines toward zero as patch size increases. 7This is
essentially the same behavior (even at the quantitative level) as | — oo that occurs in the
case of purely geometric emigration and immigration rates when C = Col? andr > ¢Co. The
difference is that in the purely geometric case the minimum patch size needed to sustain a prey
population is increased by the presence of predators but in the aggregative case the minimum
patch size is unaffected by predation. We shall see next that the geometric and aggregative
models have different behavior as [ — oo when r < ¢Co, but both predict that a larger patch
may have a smaller population than a smaller patch for some size ranges. Suppose then that
C =Gy, p—q>2,andr < cCo. Suppose that limy_, V** # 0. (Recall that V** is the
total prey and in general V** = V**(1).) Then there must exist ¢ > 0 and a sequence {I;} with
l; — oo as j — oo such that '

(3.54) A (DX
for each j. We then would have

(3.53)

icCol? 2V ()
iRV () +e

FV*=(@)) =

(3.55)
iCCo&‘lJ? —a-2

Pty sm—

Tl 2t e

As j — 00, the second expression on the right in (3.55) has limit cC, so if cCo > r then for

j sufficiently large we must have F(V**(;)) >r. However, v**(l;) must then satisfy (3.40)
with R — F(Q) = r — F(V*(};)) < 0. By Theorem 3.1 an equation of the form (3.49) will
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admit a positive solution only if R — F(Q) — 2x%/1*> > 0. Thus we must have v**(};) = 0
for j sufficiently large and hence V**(l;) = 0, contradicting (3.54). It follows that to avoid
the contradiction we must have limy_, o, V** = 0. Thus we see that if r < ¢Co, the model
with predator aggregation and a predator supply that increases proportionally with patch area
predicts that the prey population will tend toward zero as the patch size tends toward infinity.
Since in the models with aggregation any patch with » — 272D/I* > 0 will sustain a prey
population, this indicates that a maximum prey population will occur for some finite / and the
population will be smaller on patches of larger size. This is similar to what happens in the
purely geometric case but less extreme.

3.8. Finite predator population with aggregation: Many patches. The relevant equa-
tions are given by (2.15) where P*(V4, ..., V;) is given by (3.26). (Recall that we assume the
time scale for predator aggregation to be much faster than that for prey population dynamics, so
the predators are assumed to “track” the prey populations by staying at the pseudo equilibrium
defined by (3.26).) Explicitly, we obtain the system

B, 52 &2 . . a ’117-q~4
8 _ ( v,,+ Un +r(1-—y—)v,,- icCV,l Un
ot ax2 = 9y? k N
iZl" 2y, te
(3.56) £t k k

for O<x <!, O<y <l,, n=1,...,N, andwith
v, =0 for x=0,1,, y=0,1I,.
‘We observe that the equations are coupled only in the last terms involving the prey populations
Vi on the N patches. If we write the system in the more abstract form
dv, 8%v, + 8%,
ot \ax?2 ' 8y?

)+Fn(vm Vla"'QVN)

we observe that increasing vy increases Vi and hence for n # k increases

v icCIl™ 7V,
F,,(vn,Vl,...,VN)=r(1——k'1)v,,— o n_.

Y B +e
k==l

Systems with this property are called quasimonotone or cooperative and have a pumber of
special properties; see [9, 13, 20, 25]. The key observation for our purposes is that a quasi-
monotone, i.e., cooperative, reaction-diffusion system admits the same sort of comparison
principle as does a single reaction-diffusion equation (see [9, Chap. 5] or [20, Chap. 1]) so
that the methods we have used already to study the single equation (3.35) can also be applied
to the system (3.56). (More abstract formulations of the same ideas are discussed in [13]
and used in [5] to study a single equation.) If we view the terms on the right of (3.56) as
effective growth rates, then it is natural from the biological viewpoint that the system is coop-
erative, because with a finite predator population predator aggregation will cause the number
of predators on the kth patch to increase as the prey density increases. That will in turn draw
predators away from the other patches and hence make them more favorable to the prey. The
system (3.56) involves the nonlocal terms V; but that does not affect the theory to any great
extent. (Compare, for example, the monotone methods used for a competition system with
local interactions in [6] with those used in [7] for a related system involving integral terms.)
The main point is that we can establish the existence of maximal and minimal equilibria by
starting with a super- and subsolution, respectively, for the equilibrium system associated with
(3.56). Arguments similar to those used in [1, 2] then imply that if we use a subsolution to
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the equilibrium system as initial data for (3.56) it will increase with time, and if we use a
supersolution to the equilibrium problem for initial data it will decrease with time, and if the
initial subsolution is below the initial supersolution the corresponding solutions of (3.56) will
converge to equilibria. We shall see that in fact (3.56) can have only one positive equilibrium;
hence, the convergence from above and below of the special solutions constructed with super-
and subsolutions as initial data, together with the comparison principle, implies the stability of
the (unique) positive equilibrium. In our analysis we shall describe only the appropriate sub-
and supersolutions to the equilibrium problem for (3.56) (and give conditions for the existence
of the subsolution) and then show the uniqueness of the positive equilibrium for (3.56).
THEOREM 3.5. Supposethatforn =1, ..., N we have r—2n2D/1% > 0. Then (3.56) has

a unique equilibrium (vi¥, ..., vy) whichis positive in each component such that any solution
(v1, .- ., vn) Of (3.56) with v, (x, ¥, 0 >0, v(x,9,0£0 approaches (v, ..., vy) as
t — oo. Ifr —2x%D/1? < 0 for some n then for any nonnegative solutions (vy, ..., vn) of

(3.56) we have v, — O ast — oQ.

Discussion of Theorem 3.5. By the arguments given immediately prior to the statement of
the theorem it suffices to find arbitrarily small subsolutions and arbitrarily large supersolutions
to the equilibrium problem for (3.56) and then to show that the equilibrium is unique. We
observe that the vector (71, ..., ox) = (M, ..., M) satisfies

%5, 9%, 7, i cCV L IE77,
0sp(2 2% +r(1—3’—’i>m—— kel
= ax2  9y? N ra—
iy T Vi te
k=1

for all n provided M > K, so we have immediately our arbitrarily large supersolution to the
equilibrium problem for (3.56). Also, if we have 7 — 272D/ 12 > 0 for all n we may choose
¢n = sin(wx/1,)sin(ry/ 1) G.e.; dn is the normalized principal eigenfunction of the Laplace
operator 32/9x2 + 8%/8y* with Dirichlet boundary conditions on the nth patch). Observe that
if (vg,...,0y) = (&¢1, ...,E¢y) then

v, 8% v icCIF TV v,
p(F2+ )+ ()
iy Y e
k=1
8%y, 9%, ro,  icCIE™'V,
ZD( x2+8y2)+ry'"— 'K e Ln

A Ko e S

\i 22D 1 icCl,{"‘I“‘(s@n)]
=|r- bn — ——— |,

2 ES " e

if¢ > 0is sufficiently small. (By ®, we mean ¢,(x, y) integrated over the nth patch.) Hence,
we have an arbitrarily small subsolution to the equilibrium problem for (3.56). Combined
with the arbitrarily large supersolution (v, ..., Ty) = (M, ..., M), the existence of such a
subsolution implies via monotonicity the existence of minimal and maximal positive equilibl.ria,
denoted (v3*, ..., vx) and @, .. TN )s respectively, for (3.56). Also, since the subsolunqn
to the equilibrium problem can be arbitrarily small, any positive solution of (3.56) will lie
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a'Pove some subsolution to the equilibrium problem. Since solutions to (3.56) with initial data
given by (v, ..., vy) must increase toward (v7*, ..., vy (again, by standard monotonicity
arguments), it follows that any positive solution to (3.56) is bounded below by a solution which
apprf)aches @¥*,...,2%) ast — oo. Similarly, by comparison with a solution of (3.56)
smg at (71,...,0n) = (M,..., M) (with M large enough), we find that any positive
solution to (3.56) is bounded above by a solution which approaches (v7*, ..., y) ast —» 0.
If we canshow that (3.56) has a unique equilibrium then the above argument implies its stability.
We shall show by contradiction that any equilibrium must equal the minimal equilibrium
@7*, ..., 3. The argument is based on eigenvalue comparisons and is patterned after a
result of Hess [12]; similar ideas were used to study diffusive logistic equations by Skellam
[30]. e.md by the authors in [3, 5]. The first observation is that if (vf*, ..., v}) is any positive
equilibrium for (3.56) then each of the Schrodinger-type eigenvalue problelels

Y 52 ot . DP~g=4y ik
D(——‘Z’-+——‘-p-)+ (r—‘z—"‘—>—- i Y=oy

ax?  9y? K N
iy B e
k=1
for O<x<l,, O<y<lI,

¥ =0 for x=0,l,, y=0,l,

haf* principal e.igenvaluf: o = 0 with eigenfunction a muitiple of v}*. Suppose now that
(vi*, ..., v} is an equilibrium not equal to (v7*, ..., vy). Since (¥7*, ..., v} is minimal,
we must have v}* > v** for all n and v}* > p* for some n. Thus, -

N N
(3.58) Ity < Y ety
‘We next show that for some » we must have
Iz;ccz,{"q"zzy - icCIE™1 2y
~ .
i;l,f"q“zyj* te iy ETPVFte
Suppose (3.59) fails for all n. Summing over » then yields

N N
cC (iZz,{’“q‘zy;*> cC (iZl,f'q“zV:"‘)

n=1 n=1

>
N = N )
(iZz,f“q'zyf) +e <iZl,f'q'2V,:‘*) +e
k=1

k=1

3.57)

(3.59)

(3.60)

But the function cCx /(x + ¢) is strictly increasing in x, so (3.60) contradicts (3.58) and hence
(3.59) must hold for some n. Choose an » for which (3.59) holds. Multiplying (3.59) by I -2
and using the result together with the observation v}* > y** yields !

Geny gy U _GCHTTVR v ieCRT
N - .
: izlp—q—zV** k < p-q—2
Lok +e iy WV te
= k=1

Il_lequality (3.61) now implies a contradiction via the fact that (3.57) must have principal
eigenvalue zero for any equilibrium, and hence for both (7, ..., 2} and (7%, ..., v¥).
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The contradiction arises because if we denote the “potentials” in (3.57) by

Fok ; p—g—-2Y**
Eneop =7 = B -
K N
iy BTV e
k=1
and
ur* icCIP~a—4y**
— e 2 =7
-E-n(xv y) =r K N H
iy BTV e
k=1
we have E, < E, by (3.61), but by (3.57) the problems
2y Yy
D|—+ — E, Y=
(5 )+ B =
for O<x<l,, O<y<l,
¥ =0 for x=0,1, y=0,1,
and
2y | Y
D{—+ — E =

for 0O<x<l, O<y<ly,
¥ =0 for x=0,1, y=01,

must both have principal eigenvalues equal to zero. That is impossible when E, > E, by
standard eigenvalue comparison results (see for example [6, 8, 24]). It follows that to avoid
a contradiction there cannot be any equilibrium for (3.56) which is larger than the minimal
equilibrium. Hence the uniqueness of the positive equilibrium is established, and stability
follows from the previous discussion.

Tn the case where r — 22D/ 1% < 0 for some n, we simply observe that v, must satisfy

v, 8%v, 9%y, Up
‘575’3(“37;2“*3‘;2' +r(1-F)v
S0 v, is a subsolution for the diffusive logistic equation

v v o™ v
(3.62) B?—D(é}i+-5}7)+r(l——-i)v.
Hence, if we take v to be the solution of (3.62) with v(x, y,0) = va(x, y, 0) then we have
v, < v forall? by the standard comparison principle for a single reaction-diffusion equation.
However, if r — 212D/ 12 < 0it follows by Theorem 3.1 that v — 0ast — 0o, SO we must,
have v, —> 0 ast —> oo also. This concludes our discussion of Theorem 3.5.

‘We have established that to understand the behavior of (3.56) it suffices to understand
how the unique equilibrium (v}*, ..., vy’) behaves as patch sizes vary. We have seen that the
minimal patch size is the same asina situation with no predation. We shall next examine how
(3, ..., vy) behavesas the size of some patch (or perhaps all patches) tends toward infinity.
As before, the behavior of the system depends on how the predator population C changes with
the scaling of patch size.
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In the simplest case all the patches are identical, so that I, = [ for each » and the
equilibrium of (3.56) is given by v}* = v** forn = 1, ..., N, where v** satisfies

32’0** 32‘!)** v** icClp~q—4v**v**
0=D|— 4 ——— ] — ™ -
( 8x2 ay? ) *r ( K ) U T INIP Iy e
(3.63)
for 0<x<lI, O0<y<l,

=0 for x=0,l, y=0,1.

Equation (3.63) is equivalent to the equilibrium equation for the case of a single patch (3.47)
if the constants C and ¢ in (3.47) are replaced by C/N and e/N. If we let] —> oo with C (the
total predator population) held constant then as for a single patch the effect of the predators
becomes negligible and V**/12 — K, so V*/I? — K since V** = V**. If the number of
predators is proportional to the size of the patches then C = Cyl?, and since the asymptotic
behavior for a single patch as [ — oo depends only on X, r, ¢, and Cj in this situation and
not on e, we may replace C = Col? with C/N = (Co/N)I? and ¢ with ¢/N and still obtain
V=12 > K[1—52]as] — oo if r > cCo/N and V**/I2 — Oas! — oo if r < cCo/N.
Hence the model with N identical patches behaves exactly as does the model for a single patch
as [ — co except that the effects of predation are equally divided among the N patches and
thus reduce the effective value of Cy by a factor of 1/N in the asymptotic analysis.

‘We now discuss the case where the patches may be of different sizes but the size of
one, say the first, is increased toward infinity. If we assume the predator population to be
proportional to total patch area we have C = Co(}:,’:'=1 I2). To understand the behavior of
the equilibrium densities V,** /12 in this case we shall need to compare the system equilibrium
with equilibria of various equations having the form discussed in Theorem 3.4. We shall
estimate our equilibrium (v(*, ..., vy’) for (3.56) by showing that the components must be
sub- or supersolutions to equilibrium equations of the sort occurring in “single patch” models
as treated in Theorem 3.4. We shall assume r — ¢Cyp > 0, but r — ¢Cy may be small. We begin
with an upper bound for v}* and hence for V;™*/12. Since

N
icCo (Zz,f) 1ty

k=1 >

N N ’
DY T Vete iry; 4 [iZl,f"? K+ e:I
k=1 k=2

icColf™ 7w,

we find that v]™ is a subsolution to the equilibrium problem

0=D (325'{* + ?.Z_UL> +r ( - ﬂ.) T — icColf ™ V0]
2 2 N
o > K P [sz IS e:I
1 i k
k=2

for 0<x<li, O<y<l,
7 =0 for x=0,0;, y=0,1l;.
Hence, we have v7* < 77". By our analysis of the case of a single patch with predator
aggregation and a finite predator supply scaled proportionally to the patch area, we have
VT*/Z% ~> K[1 ~ (cCo/r)} as l; — oo. Thus, for /; large enough we have forany ¢ > 0

(3.64) Vit < K(1+)[1 = (cCo/n)].
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On the other hand, for I; large enough we have for any given « > 0

N N
icCo (Zz,%) Pt ieCo {14—2(1,3/1’;’)} o2
<

k=1 k=2
s p—q—2
lli7 a Vi+e

N
i Zlf—q—z Vite

k=1 g2

- icCo(l +a)l¥
P97V, +e

so that v} is a supersolution to

oo p (U Fu) _, (1 - i) o 1eCollA( + )V TR
- 9x? ay? k)™ Pty e

for 0 <x <1y, O<y<ly,

u*=0 for x=0,1; or y=014.

Again appealing to the case of a single patch discussed in the preceding section, we have (fora
small enough that 1—cCo(1+c)/r > 0) the limiting behavior V1*/ lf — K[1=-cCo(1+a)/r]
asl; — 00, so since v{* > y}* we have

Vi /2 = KA = )1 —cCo(l +)/1]

for arbitrarily small o and B provided /; is sufficiently large. By continuity and the fact that
o and B can be taken to be arbitrarily small we have :

(3.65) V2 > K(1— )1 —cCo/r]

for [, sufficiently large, where y is also arbitrarily small. It follows from (3.64), (3.65), and
the fact that ¢ > O and y > O are arbitrary that limy, oo V;*/1} = K[1 — cCo/r]. This is
the same result as in the case of a single patch and indicates that as far as the largest patch in
this scenario is concerned the presence of the other patches is irrelevant if that largest Patch
is sufficiently large. (If we had assumed r < cCo a similar sort of argument would gpl}z'
limy,, 00 Vi*/12 = 0, but we shall not pursue that point further.) We ask next how V**/I2
behaves in this scenario as [; — 0o. We shall establish a lower bound independent of the
quantity cCy provided J; is sufficiently large. The biological interpretation is that the largest
patch in effect draws the predators away from the other patches. (Remember that alth-ough we
scale the predator population with total area we assume that itis finite. Perhaps %t is quite large,
if I is large, but it is still finite.) To understand the behavior of V*/ 2 we again compare v
with the unique solution of an equilibrium problem for which v;* isa supersolution. We have
for large I;

N N -
icCo (Zz,%) L Ve 16 (z’f + Zz,f) 12172V 12)
k=1 k=2
< .
- PV B) +e

(3.66) =
iy BTV e
k=1

For our equilibrium problem we have V™ /12 < K and for large I; we have V™ /l.f. >
K(1 — p)[1 — cCo/r] with y arbitrarily small, so V;*/1} is bounded below by a positive
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constant and hence since p — g > 2 the right side of (3.66) approaches zero as ; — oo. It
follows that for any 4, > 0 we can choose /; large enough that v* is a supersolution to

322:* 822"** p*
O“D( 852+ ax? )“"'(1"”"'1?)2"**"“”2?

for 0<x<1l, O0<y<l,

3.67)

v =0 for x=0,1,, y=0,1,.

Thus, for [y large, v}* > v** where v** is the unique positive solution of (3.67 i

Hn 10 be small enough that v** > 0 exists.) Note that this does not depend(on cgf'g.(vIVIf):veqlal;ug:
I, must be so that v}* is a supersolution to (3.67) fora given 1, will depend on cCy, but for any
Un > 0and any cCy it will be the case that vr* is a supersolution to (3.67) for [; sufficiently
large. Iff.o.r each n we choose 11, so that r — ., — 272D /12 > 0 we see that for each n (3.67)
ha; a pglsmve equilibriu.m._z_)n** with v7* > 7*. Hence we have for /; large V*/12 > V**‘/lf,
:v) rel;;a ; ?Olrozvairh b:und is independent of ¢Cy as long as r — c¢Cy > 0. If ¢Cy is close enough

(3.68) K[l — (cCo/r)] < V*/ 12,

then since V;*/12 — K[1 — (cCo/r)] as I; — oo and Vi /12 > V**/12 for I, sufficiently
large we may conclude that the average prey density Vi*/ 12 on th;arggst patch is smaller
than the average prey density on any other patch if the largest patch is large enough. This
shows there are parameter values for which a larger patch may have a lower prey density.

_ 4. General conclusions. We have constructed and analyzed several models for spa-
flal asp.ects.of the interactions of a logistically growing prey population and an immigrat-
mg{em:tgratmg predator. All of our models assume that the time scale for immigration and
emigration qf predators is much faster than that for the population dynamics of the prey, and
in tumn the _tlme scale for the population dynamics of the prey is much faster than th;;t for
the population dynamics of the predator. Hence we always assume that the predators do not
reprf)duce but quiclfly achieve an equilibrium (or pseudoequilibrium) population via immi-
gra.tlor% agd emlgra‘tlon while the prey grow logistically. In the ladybird beetlefaphid system
which initially 'motlvatcd our work, the aphids disperse at short range through a single patch of
host plants.whﬂe the ladybirds fly around and between patches at much longer ranges. Con-
sefluenﬂy, in our models the predators perceive the environment as a collection of pz;tches
with each patch a continuous habitat for the prey. We consider this development of models a;
two distinct spatial scales as well as two distinct time scales to be one of the more important
aspects of our work. We consider models where the predators immigrate and emigrate at rates
wh}ch c%epend only on the patch size and geometry, and also models in which the predator
emlgranon- rate decreases with prey density in addition to its geometric dependence on the
patch. This second type of model describes a simple form of area-restricted search by the
predators. Finally, we consider cases where the predator population is effectively unlimited in
the sense that the size of the pool of predators available for immigration is unaffected by the
number of predators immigrating to the patches containing the prey, and other cases where
the total predator population is finite. In the second case we consider the possibility that the
total predator_ p_opulation remains fixed regardless of patch size or the number of patches, and
also the_posmbﬂity that the predator population increases with patch size or numbers ’Thls
last scaling hypothesis reflects the idea that as patches become sufficiently large or nun-lerous
they must encompass a larger geographic area which would be expected to contain a larger
numbfar of predators. The hypothesis of an unlimited predator supply reflects the idea that
there is a large source of predators near the prey patches.
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Our mathematical modeling and analysis of the scenarios described above leads us to
some general conclusions about the behavior of the system as patch size increases. In all
cases the models either have a unique positive equilibrium or prey densities tend toward
zero asymptotically in time. All of the models which assume that the predator supply is
unlimited or that the total predator population is proportional to the total patch area display
the phenomenon that for at least some values of the parameters describing prey growth rates,
predator immigration and emigration rates, and the impact of predation on the prey, the average
population density of the prey at equilibrium will be smaller on sufficiently large patches than
on patches of moderate size. This is in sharp contrast with the case of simple KISS models for
the prey alone, in which the prey density approaches logistic carrying capacity as patch size
approaches infinity. The effect is most pronounced in the cases where the predator immigration
and emigration rates depend only on the patch geometry and where the predator population
is unlimited. In those cases there is typically a maximum patch size which can sustain a prey
population; on larger patches the prey population must become extinct. The effect is somewhat
weaker but still apparent in cases with an unlimited predator supply and a predator emigration
rate inversely proportional to average prey density. In those situations the equilibrium prey
density or even the total prey population typically approaches zero as patch size increases,
but there is no maximum patch size. In our models the prey population diffuses through
a continuous environment with a hostile exterior so there is always a minimum patch size
necessary to sustain a prey population. The minimum patch size is increased when the predator
immigration and emigration rates are purely geometric, and the intrinsic rate of increase of
the prey population at low densities is decreased. In the cases where the predator emigration
rate is inversely proportional to the average prey density the minimal patch size is unaffected
by predation, as is the intrinsic growth rate for the prey at low densities. The difference is that
in cases where the predator emigration rate increases as prey density decreases the number
(and hence the impact) of predators becomes small at low prey densities. Thus, the effects
of predation are negligible when the patch is near the minimal size needed to sustain a prey
population since then the prey density will be small because of the usual KISS phenomenon
of dispersal into the hostile exterior of the patch. Similarly, since the effect of predation will
be reduced whenever the prey density is small, the prey population will not be completely
driven to extinction and can grow with little interference from predators if it starts at a low
enough density. The models in which the predator population is fixed independent of patch
size or numbers all indicate, not surprisingly, that the effect of predation becomes negligible
as patch size increases toward infinity. The behavior of the models in the intermediate cases,
where the predator population is finite but grows proportionally to the total area of the patch
or patches, depends in a more delicate way on the various parameters in the system. Again,
purely geometric dependence of immigration and emigration rates can lead to an increase in
minimal patch size and a decrease in intrinsic growth rate for the prey, while an emigration
rate inversely proportional to average prey density does not affect those features of the prey
population dynamics. In these scenarios the equilibrium prey density may go toward zero as
patch size increases, but the detailed behavior of the prey equilibrium relative to patch size
depends in delicate ways on the parameters of the models and may be quite complicated in
some cases. In particular, some of the models with purely geometric predator immigration
and emigration rates and a total predator population depending on patch size admit parameter
values for which moderately small or very large patches can sustain prey populations but very
small or moderately large patches cannot. This phenomenon is fairly delicate and it is not
clear that it occurs in nature. On the other hand, the phenomenon of “larger patch, smaller
prey density” is quite robust, and it seems plausible to us that it might occur in some natural
systems involving slowly dispersing prey and rapidly immigrating/femigrating predators. A
graph comparing the relationship between patch size and average prey density for our various
modeling regimes is given in Figure 1.



PREDATOR-PREY SYSTEMS AT MULTIPLE SCALES 285

Average prey density

Patch size

¥16. 1. The graphs indicate schematically how the average prey density on a patch varies as the patch size
increases under three different sets of modeling hypotheses. The dashed line indicates the carrying capacity K for
the basic logistic model for the prey. The graph A illustrates the case of a simple diffusive logistic model, i.e., a KISS
model, for the prey in the absence of predators. In that case the average prey density approaches the carrying capacity
asymptotically as the patch size increases. In the cases illustrated by graphs B and C the number of predators is
assumed to increase proportionally with the total area of all of the patches and the intensity of predation and/or the
size of the predator population are assumed to be relatively large with respect to the intrinsic growth rate r of the prey.
The graph B illustrates the case where the predators aggregate in response to the prey density as well as patch size
and geometry. In that case the minimum patch size required to sustain a prey population is the same as in the absence
of predators, but the average prey density approaches zero asymptotically as the patch size increases. The graph C
illustrates the case where the predators immigrate to and emigrate from patches as rates depending upon geometric
Jactors only but not on prey density. In that case the minimum patch size needed to sustain a prey population is
increased and there is also a maximum patch size that can sustain a prey population. Other sorts of behavior are also
possible in the scenarios that include predators. The details of the asymptotic behavior of the average prey density
with respect to increasing patch size in those scenarios depend on several of the parameters in the models.

The above conclusions are all based on the predictions of our models. We also have some
conclusions about the models themselves. Our approach has been to use models where the
predator dynamics were described by a patch model while the prey dynamics within patches
were described by a KISS model (i.e., a reaction-diffusion model) with predation. This sort
of model is somewhat more difficult to analyze than a pure patch model, but can be treated by
methods not too different from those already widely used in reaction-diffusion theory. It gives
a much richer description of the effects of patch size in small to moderate size ranges than does
a pure patch model and would allow other sorts of analysis which we have not explored here,
e.g., consideration of the effects of patch shape or of the degree of hostility of the environment
outside the patches. We believe that this modeling approach may have broader applications
to systems involving a patchily distributed, slowly dispersing prey and a rapidly dispersing
predator. These could perhaps include some types of plant-herbivore systems. We also believe
that this sort of model is the most realistic for the aphid/ladybird system which inspired our
work. In summary, the problem of modeling populations that interact at a variety of scales is
an important issue in ecology, and we hope that this work will encourage further investigation
of this topic.

Acknowledgment. The authors thank Peter Kareiva for suggesting the topic of this article
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